On the role of chemical detail in simulating protein folding kinetics
نویسندگان
چکیده
Is an all-atom representation for protein and solvent necessary for simulating protein folding kinetics or can simpler models reproduce the results of more complex models? This question is relevant not just for simulation methodology, but also for the general understanding of the chemical details relevant for protein dynamics. With recent advances in computational methodology, it is now possible to simulate the folding kinetics of small proteins in all-atom detail. Therefore, with both detailed and simplified models of folding in hand, the outstanding questions are what the differences in these models are for the description of protein folding dynamics, and how we can quantitatively compare the folding mechanisms found in the models. To address the outstanding problem of how to determine the differences between folding mechanism in a sensitive and quantitative manner, we suggest a new method to quantify the non-linear correlation in folding commitment probability (Pfold) values. We use this method to probe the differences between a wide range of models for folding simulations, ranging from coarse grained G o models to all-atom models with implicit or explicit solvation. While the differences between less-detailed models (G o and implicit solvation models) and explicit solvation models are large, the differences within various explicit solvation models appear to be small, suggesting that the discrete nature of water may play a role in folding kinetics. 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Matching Simulation and Experiment: a New Simpliied Model for Simulating Protein Folding (extended Abstract) a Simpliied Model for Protein Folding
Simulations of simpliied protein folding models have provided much insight into solving the protein folding problem. We propose here a new oo-lattice bead model, capable of simulating several diierent fold classes of small proteins. We present the sequence for an == protein resembling the IgG-binding proteins L and G. The thermodynamics of the folding process for this model are characterized us...
متن کاملP-30: The Effect of The T26248G Polymorphism on Putative MethyltransferaseNsun7 Protein Function and Its Role in Male Infertility
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملUsing massively parallel simulation and Markovian models to study protein folding: examining the dynamics of the villin headpiece.
We report on the use of large-scale distributed computing simulation and novel analysis techniques for examining the dynamics of a small protein. Matters addressed include folding rate, very long time scale kinetics, ensemble properties, and interaction with water. The target system for the study, the villin headpiece, has been of great interest to experimentalists and theorists both. Sampling ...
متن کاملP-31: The Alteration of SpermatogenesisHas A Correlation with Sertoli Cell Mitochondrial Abnormal Morphology in Cytotoxicity of Testicular Tissue Mediatedwith Monosodium
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملProtein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions
Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005